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A high-order-accurate finite-difference approach to direct simula-
tions of transition and turbulence in compressible flows is described.
The technique involves using a zonal grid system, upwind-biased
differences for the convective terms, central differences for the viscous
terms, and an iterative-implicit time-integration scheme. The integra-
tion method is used to compute transition and turbulence on & flat
plate. The main objective is ta determine the computability of such a
flow with currently available computer speeds and storage and to
address some of the algorithmic issues such as accuracy, inlet and exit
boundary conditions, and grid-point requirements. A novel feature of
the present study is the presence of high levels of broad band
freestream fluctuations. The computed data are in qualitative agreement
with experimental data {from experiments on which the computation is
modeled ). The computational results indicate that the essential features
of the transition process have been captured. Additionally, the finite-
difference method presented in this study can, in a straightforward
manner, be used for complex geometries.  © 1993 Academic Press, Inc.

INTRODUCTION

In recent years the techniques of computational fluid
dynamics (CFD) have been used to compute flows
agsociated with geometrically complex configurations.
However, success in terms of accuracy and reliability has
been limited to cases in which the effects of turbulence and
transition could be modeled in a straightforward manner.
Even in simple flows, the accurate computation of skin
friction and heat transfer using existing turbulence models
has proved to be a difficult task, one that requires extensive
fine-tuning of the constants in the turbulence models used.

* Originally presented as AIAA Paper No.91-1607 at the “ATAA 10th
Computational Fluid Dynamics Conference, Honolulu, Hawaii,
June 24-26, 1951
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In complex flows {for example, in turbomachinery flows
in which vortices and wakes impinge on airfoil surfaces
causing periodic transition from laminar to turbulent flow),
the development of a turbulence model that accounts for ail
scales of turbulence and predicts the onset of transition may
prove to be impracticai.

Fortunately, current trends in computing suggest that it
may be possible to perform direct simulations of turbulence
and transition at moderate Reynolds numbers in some
complex cases in the near futute.

In this paper we report on a direct simulation of transi-
tion and turbulence in a spatially evolving boundary layer
on a flat plate. This flows exhibits laminar, transitional, and
turbulent characteristics and, hence, is a test case that has
many of the characteristics found in more complex flows.
The main objective of the study is to determine the com-
putability of such a flow with currently available computer
speeds and storage and to address some of the algorithmic
issues such as accuracy, inlet and exit boundary conditions,
and grid-point requirements. A study of the fluid physics
involved and the creation of a data base for turbulence and
transition modeling are an integral part of this effort.

Most of the earher work in direct simulations of transi-
tion has been confined to the temporal evolution of a
boundary iayer that is subject to certain initial disturbance
fields. Reference [17 presents one such direct simulation
that is tailored to mirror the experimental data of Ref. [2].
The incompressible form of the Navier-Stokes equations
was solved using a spectral method in the streamwise and
spanwise directions and a second-order-accurate central-
difference method in the wall-normal direction. The
computed physical phenomena such as detached shear
layers and spikes in the “peak plane” were found to be in
good agreement with the experimental measurements,
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Reference [3] also describes direct simulations of a
temporally evolving boundary layer. As in Ref [1], the
computation is petformed using a parallel mean-flow
assumption that permits the use of a Fourier spectral
method in the streamwise and spanwise directions. Whereas,
a two-dimensional eigensolution and a pair of oblique
three-dimensional eigensolutions of the Orr—-Sommerfeld
equation were used as the initial perturbation in Ref. [1], a
finite-amplitude two-dimensional eigensolution of the
Orr—Sommerfeld equation and low-amplitude, three-
dimensional random noise were used in Ref [3]. The
advantage of the latter approach is that the domipant
spanwisc wave number emerges from the computation
instead of being assumed as was done in Ref. [ 1], Reference
[4] presents a numerical investigation that is similar to
those of Refs. [1,3]. The incompressible form of the
Navier—Stokes equations is solved with a paraliel flow
assumption and with periodic boundary conditions in the
streamwise and spanwise directions. A Fourier spectral
method is used in the streamwise and spanwise directions,
and a Chebyshev callocation method is used in the wall-
normal direction. Studies of both the Klebanoff-type and
subharmonic-type of transition are presented.

Clearly, studies of the temporal evolution of boundary
layers have both increased our understanding of transition
and yielded estimates of the computing requirements for
-direct simulations of transition. However, those studies
were approximations to a spatially evolving boundary layer.
A numerical investigation of the growth of instabilities in a
spatially evolving boundary layer is presented in Ref [5].
The incompressible form of the Navier—Stokes equations is
solved using fourth-order accurate finite-differences in the
streamwise and wall-normal directions and a Fourier
spectral method -in the spanwise direction. The governing
equations are solved by using a vorticity—velocity formu-
lation for the disturbance variables. The disturbances are
introduced into the flow field by means of blowing and
suction over a portion of the upstream region of the flat
plate. Results are presented for the spatial evolution of
small-amplitude disturbances, subharmonic resonance
breakdown, and fundamental resonance breakdown.
However, the computations are limited to the onset of
transition.

Here we present results obtained for a spatially evolving
(fiat-plate) boundary layer. The computational region
includes both the transition region and the turbulent region.
A direct simulation of low free-stream disturbance transi-
tion that includes both the transition and turbulent regions
would require far greater computational resources than are
currently available, A recent investigation [6] reports on
the pitfalls of inadequate resolution in simulating transi-
tional flows. However, for high levels of free-stream tur-
bulence the transition region is much closer to the leading
edge of the flat plate, and hence it may be computable on
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currently available computers. In this study we attempt one
such simulation that is modeled on the experiments
reported in Refs. [7-9]. The Iree-stream turbulence
intensity in these experiments is approximately 2.6%, the
onset of transition is at roughly Re .= 250,000, and the flow
becomes fully turbulent around Re, = 600,000 (Re, is the
Reynelds number based on the length of the plate).

One of the advantages of the parallel flow assumption is
that periodic boundary conditions can be used in the
streamwise direction (in addition to periodicity in the
spanwise direction) and, consequently, the highly accurate
Fourier spectral approach can be used in both the spanwise
and streamwise directions. Obviously, such an assumption
cannot be made in the general case. Reference [ 10] presents
a high-order accurate, upwind-biased, finite-difference
scheme for the incompressible form of the Navier—Stokes
equations. This scheme was developed to investigate the
possibility of performing direct simulations of turbulent and
transitional flow in general geometries with arbitrary
boundary conditions in an efficient and straightforward
manner. The scheme was used to compute the exponential
growth of two-dimensional eigensolutions of the Orr—
Sommerfeld equation, as well as to compute the fully
developed turbulent flow in a channel. The growth rate of
the eigensolution agreed very well with that predicted
by linear theory. The turbulent channel-flow simulation
yiclded mean flow properties and higher-order turbulence
statistics that agreed well with both experimental data and
earlier spectral simulations (with approximately the same
number of grid points).

In the present study the method of Ref. [10] is extended
to solve the compressible form of the Navier-Stokes equa-
tions. Details regarding the scheme and the boundary
conditions employed are described in the following sections.
One additional feature that is included in the present for-
mulation is the use of multiple zones in the computation;
different zones contain different grid densities. Such a zonal
approach makes the best possible use of computer resources
and 1s thus essential to performing computationally inten-
sive simulations such as those of transition and turbulence.
The zonal method is also discussed in the following sections.

The resuits presented herein comprise velocity statistics
and skin friction in the turbulent and transition regions, as
well as the development of streamwise and spanwise
vorticity ficlds in the transition region.

NUMERICAL METHOD

A finite-difference technique was used in Ref [10] to
obtain an accurate simulation of incompressible, fully
developed, turbulent channel flow. The computed tur-
bulence statistics were in good agreement with those
obtained using a spectral method with approximately the
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same number of grid points. The finite-difference technique
used in Ref, [ 10] is based on a partially implicit, fractional-
step method developed in Ref. [11].

One of the problems encountered in direct simuiations of
turbulent flow is the control of aliasing errors. The use of
schemes that do not have a mechanism for controlling such
errors can result in the decay of the turbulence in a given
flow field or an unbounded growth of the solution in others.
One method of reducing the effect of this problem is to use
kinetic-energy conserving schemes. Energy is conserved by
such schemes, but it is not clear how that energy is
redistributed. A second method of controiling aliasing error
is to extract and discard at each time step that energy which
would otherwise be aliased back. However, current
procedures that perform this operation rely on series
representations of the dependent variables (such as Fourier
representations), and it is not clear how these procedures
can be extended to curvilinear grids.

The method of Ref [10] uses an upwind-biased
differencing technique for the convective terms of the
Navier-Stokes equations to control aliasing errors. The
leading truncation-error term of some upwind differences is
dissipative in nature and thus damps the higher-frequency
content. The main disadvantage is that the useful informa-
tion in the high-wave-number portion of the spectrum is
also lost in the process. However, this problem can be
overcome with the use of additional grid points. The
upwind-biased finite-difference technique (like other finite-
difference techniques) also has the advantage that it can be
used for curvilinear grids in a straightforward manner.

The results of Ref. [10] clearly demonstrate that signifi-
cant reductions in the number of grid points can be
obtained with the use of high-order-accurate differencing
techniques. The method of Ref [10] uses fifth-order-
accurate upwind-biased differences for the convective terms
and sixth-order-accurate central differences for the viscous
terms. It can be shown that 2n + | grid points are required
to produce nth-order-accurate fully upwind differences (this
estimate takes into account that both forward and back-
ward differences of a given quantity may be required at any
grid point). Thus an 11-point stencil is required in order
to produce fifth-order-accurate upwind differences, The
problem with such large stencils is that many grid points
near the computational boundaries can no longer be treated
using the finite differences used in the interior; therefore,
they will require special treatment. Hence, finite differences
are needed that are as compact as possible, subject to the
constraint that they have the desirable damping that
controls aliasing errors.

Upwind-biased differences require a much smaller stencil
than fully upwind differences in order to obtain a given
order of accuracy and, in addition, have the desired dissipa-
tion to control aliasing error. Upwind-biased differences
achieve a higher order of accuracy for a given stencil size by
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using grid points on either side of the point in question, but
with more points in the direction in which the difference is
to be biased. For example, a decision to use at most five grid
points (two on either side of the point at which the
derivative is to be calculated) would result in a second-
order-accurate fully upwind (backward) difference for a first
derivative,

Qu\ 3w duy g tu,

ax/, 2Ax ’
whereas the same derivative could be computed to third-
order accuracy using upwind-biased differences as follows:

(a_u) 2wy, 3w 6u
ox/, 6A4x '

The use of the entire stencil would result in a fourth-order-
accurate central difference without natural dissipation.
The method of Ref. [10] uses a seven-point stencil to
obtain fifth-order-accurate, biased backward and forward
differences.

The integration method used in this study for the com-
pressible form of the Navier-Stokes equations incorporates
all of the features discussed above. The present method
is a high-order-accurate, upwind-biased, finite-difference
technique that is used in conjunction with an iterative-
implicit time-advancement scheme. The convective terms
are evaluated as in Ref. { 12] (but with high-order-accurate
differences instead of second-order-accurate differences),
and the iterative implicit technigue of Rel. [13] is used to
integrate the equations of motion in time.

To describe the method, we consider the unsteady,
compressible, nonconservative formulation of the Navier—
Stokes equations in three spatial dimensions,

Q,+AQX+BQ},+CQ:=% (Re+S,+T.) (1)

where () is the vector of dependent variables

(2)

=
Il
BT T - -

In Eq. (2), p is the density; u, v, and w are the velocities in
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the x, y, and z directions, respectively; and p is the pressure.
The matrices A4, 8, and C are obtained from the matrix D,

q kip kip kip O
0 ¢ 0 0 kijp
D=0 0 ¢ 0 ki/p |, (3)
0 0 0 q  kifp
0 kiyp kyyp kayp g

where ¢ is defined as g = uk, + vk, + wk;. The matrix A4 is
obtained from D with &, =1, k, =0, and %, = 0; the matrix
Bis obtained with k; =0, k, =1, and k, = 0; and the matrix
C is obtained using £, =0, k, =0, and ;= 1. The viscous
term R, on the right-hand side of Eq. (1) is given by

0
(2t + Au +v, +w.)),
< (plu, +v.)), ,
(el + w,)),
p(uPr='(c) ).+ ¢

where c¢ is the local speed of sound and

i= -2u/3
¢ = P(}’ - 1)(“x(2#u_x + j“(u_t + U_v + W:))
+ v.t(#(u_v + vx)) + WI(,U.(M__ + wx)))'

(5)

The viscous terms §, and T. are obtained from similar
expressions,

Before describing the time-integration method, it is
heipful to consider the techniques used to compute the
convective and viscous terms. The convective terms AQ ,,
BQ,, and CQ. (Eq. (1)) are evaluated as in Ref. [12]. To
illustrate the technique, we consider the term AQ .. The
matrix A can be written as

A=PAP™! (6)

where P~ ' is the matrix of the left eigenvectors of 4, and A

is a diagonal matrix containing the eigenvalues of A. The
term AQ, is evaluated as

AQ =407 +A™Q} (7)

where A*=PA*P~!, and A* and A~ are diagonal

- matrices containing the positive and negative eigenvalues of

A, respectively. The terms Q@7 and @, are forward and
backward differences of the vector Q, respectively. Addi-
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tional details regarding this method of evaluating the
convective terms can be found in Ref. [12]. In the present
study, 27 and @ are computed using fifth-order-accurate
forward- and backward-biased finite differences using a
seven-point stencil as

(—6Q;+2+60Q;+1+4OQ; )
0- = —120Q,-_1+30Q,-_2*4Qi—3
7 1204x

(4Qi+3—30Qi+2+120Q:‘+1 )
; —40Q,—600Q,_,+6Q,_;
1204x

on a grid that is equispaced in the x-direction. The
remaining convective terms are evaluated in a similar
manner. For stretched meshes (for example, the type used in
the wall-normal direction in this study), the coefficients in
the difference formulas are evaluated numerically using
Lagrange polynomials so as to retain high-order accuracy
even on grids where the rate of change of grid spacing is not
sufficiently smooth (obtaining explicit formulas for these
coefficients is a laborious task for differences with higher
than second-order accuracy). Additional details regarding
this procedure can be found in Ref. [ 10].

The viscous terms are computed using central differences
and a five-point stencil (fourth-order accuracy) To
illustrate, we consider the term (u(x, +v,)), in the vector
R,. This term is first expanded as

(1l +0,0) = gl 4 0.) + Bl +0,.). (8)
Each of the derivatives on the right-hand side of Eq. (8) is
then evaluated using central differences. As in the case of the
convective terms, the coefficients in the difference formuias
are evaluated numerically using Lagrange polynomials.

The fully implicit finite-difference representation of
Eq. (1) can now be written as

3Q11+1_4Qn+Qn—l
24
H(ATQ, +A47QF +B Q]
+BTQI+CTQo+ €O

- (}J (R +S, + T..))“ ©)

Equation (9) is second-order accurate in time and
represents a system of nonlinear equations. This system of
nonlinear equations can be solved using a Newton-
Raphson-type iterative technique at each time step. The
linearization of Eq. (9) results in
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1.5+ At AV, + 4 _A")
) Vx, Ax;

i

+ dt (Bw’ + B4 m (ﬁ+&)

4, V‘,))
(ij V}’j

C*V.  CTANN e

+At( v, T )) (@r+' -9
3Qp_4Qn+Qn—l

_At( 241

+(ATQ;+A QI+ BTQ]
+B Q4+ CHYQ-+CQ1)

1 P
—(ﬁ(Rx+Sv+ T:)) )
P I

where V and A are backward and forward difference
operators, respectively, the matrices M and N represent the
linearization of the first and second derivatives in the
viscous terms, and p is an iteration index. For the viscous
terms, only the derivatives in the y or wall-normal direction
have been retained on the left-hand side (LHS). On the LHS
of Eq. (10), the convective terms are represented with first-
order-accurate formulations and the viscous terms with
second-order formulations as in Ref. [13]. The reason this
does not affect the accuracy of the scheme is as follows. In
Eq. (10), @7 is an approximation to Q"*'. When p=0,
¢ =", and when Eq. (10) is iterated to convergence at a
given time-step, 07 - Q"+ . Since the LHS of Eq. (10) can
be driven to zero at each time-step, linearization errors
(such as those mentioned above)} can be driven to zero
during the iteration process. It should be noted that the
discretization presented in Eq. (10) is valid only for
rectangular grids {however, the grid spacing in each
direction may vary).

The LHS of Eq. (10} represents a sparse matrix of large
bandwidth and, therefore, is computationally expensive to
solve. Reference [13] uses an approximate factorization
technique, as was done in Rel [141, to overcome this
problem. The factored form of Eq. (10) is given by

(a1 par{ e 22

(10)

Vx, Ax,
B*V, B4
X oc]+,6'At( T4 L
( Vy, 4y

)8 ()
ML BN
(A.l%,-+Vy,- dy; Vy,

C*V., C 4NN s+l s
x(a1+ﬁdl‘( Va, + iz, )) Q 07)
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307 40"+ Q"""
- —Al( YT

+(ATQ  +A-Q + B0
+BTQS+CTQ+C0N)

(L)
Lines

where o= 1.5"* and 8= 1.5"*° The approximation made
earlier of using a three-point stencil in formulating the LHS
of Eq.(10) has resulted in systems of block-tridiagonal
matrices in Egq (11) instead of block-heptadiagonal
matrices; this reduces the computing time required at each
iteration at the possible expense of the number of iterations
to converge. The factorization error, just like the lineariza-
tion error, can be driven to zero during the iteration process.

One additional approximation that has been made to the
x and z terms on the LHS of Eq. (11) is the use of diagonal
forms as in Ref. [15]. The inversion in the x direction is
approximated as

AV, A4,
(al-l—ﬁdt( Vx, + I, ))

ATV A7 A
~pPlal+p At x =) P (12
(d th ( Vx; * Ax, )) (12)

{1)

where the matrices P, P~', and A are defined in Eq. (6).
This approximation results in systems of scalar tridiagonal
equations instead of systems of block-tridiagonal equations.
The inversion in the z direction is treated in a similar man-
ner. The use of the diagonal form of the equations resulted
in a decrease of about 25% in computation time. The
diagonalized form was not used in the y direction because of
the presence of the viscous terms,

An important limitation imposed by using the nonconser-
vative formulation of the Navier-Stokes equations is that
the method can oniy be used to compute flows that are free
of flow discontinuities (such as purely subsonic flows). The
nonconservative formulation of the governing equations
has been chosen for this investigation because the associated
finite-difference method can, in a straightforward manner,
be extended to curvilinear coordinate systems without a loss
in accuracy. Methods that use the conservative form of the
equations, that are conservative in a discrete sense, and that
are high-order accurate on generalized grids are still under
deveiopment. In summary, the present method is second-
order accurate in time and fourth-order accurate in space.

BOUNDARY CONDITIONS

The computational region of interest (Fig. 1) consists of
three zones. Zone 1 is an inlet region where the “computed
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Upper surface symmetry
boundary condition

Coarse-grid
region

Fine-gtid
region

AN N

Inist 10
2one 1

N,

axit to
zone 3

e e o g
rd

Symmetry boundary ‘No-siip' boundary z
condition condition
FIG. 1. Schematic of computational region (not to scale).

freestream turbulence” develops. This is followed by zone 2,
whose upstream boundary is at the leading edge of the flat
plate. Zone 3 occurs immediately downstream of zone 2 and
contains the exit region where the grid becomes extremely
coarse in the streamwise direction. The use of two separate
zones to cover the flat plate permits the use of different grid
densities in the regions comprising these zones. Typically,
zone 3 contains the highest grid resolution of ali the zones
and is placed in the region that is to be studied in detail.
Figure 2 shows the lengths of zenes 1, 2, and 3 used in two
different computations that are performed in this study.
The boundaries that contain the several grids that

are used in this study can be broadly classified as natural
boundaries and zonal boundaries. The natural boundaries
include the inlet boundary of the first zone (which is also the
inlet to the entire region), the lower surface boundaries of ali
three zones, the exit boundary of the third zone (which is
also the exit to the entire region), the periodic boundaries in
the spanwise (z) direction and the upper boundaries of all
the three zones. The boundary between the first and second
zones and the boundary between the second and third zones
together comprise the zonal boundaries of the system. Both
the natural and zonal boundary conditions are discussed in
the following section.

Grid A {not to scale)

Zone 1 Zone 2 Well resolved Exit region
region of zone 3 of zone 3
Ax* = 56, Az* =20 Axt =28 Azt =10
.- . > -~ *
~ 10" > 21" r ol s 3 - 12" >
Grid B (not to scale)}
Zone 1 Zone 2 well resolved Exit region
region of zone 3 of zone 3
Ax* = 56, Az* = 20 Ax* =28, Azt =10
[ o g *— *r— .
- 1" s 7.257 - 5.75" s R T A

FIG. 2. Zonal configurations used in grids A and B.
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Inlet Boundary of Zone 1

The inlet boundary of the first zone is a subsonic
inlet boundary. Four quantitics must be specified at this
boundary. The four chosen for this study are a Riemann
invariant R, =u+ 2¢/(y — 1), the stagnation pressure and
the velocities in the wall-normal (y) and spanwise (z)
directions. A second Riemann invanant R,=u—2¢/(y—1)
is extrapolated from the interior of zone 1 to complete the
system of equations required to uniquely determine the
dependent variables at the inlet. The resulting system of
equations is given by

U+ 2, /(y— 1) = (1o + )+ 2¢,,/(y— 1)
u,—2c,/(y — 1) =u; —2¢,/(y — 1}

v,==0
o (13)
W, =W
y—1
—p (14—
pb oo( + 2
x(ui+v§+“’i))"’""’“’
2 H
Cy

where P is the stagnation pressure and where the subscripts
b, oo, and 2 refer to the boundary, inlet reference variables,
and the grid point just downstream of the inlet boundary,
respectively. The quantities #, @, and W are prescribed
velocity perturbations.

The perturbation velocities are computed using a
prescribed value of the root-mean-square intensity, length
scale, and range of frequencies over which the energy is to
be distributed. The procedure used in this study is similar
but not identical to that used in Ref. [ 16 ]. The describe this
procedure we consider the perturbation velocity a(y, z, ).
Assuming periodicity in y, z, and r we can write the Fourier
representation of i( y, z, ¢),

_ L M N i 2 l'
10.5,0=F L T Apsin(2+4,)
= ¥

1 m=1 n=1

. {2nmz . (2nnt
xsnn( L +¢m) sin (T+¢,,), (14}

where L, and L_ are the dimensions of the computational
region in the y and z directions, respectively, T is the period
of the lowest frequency to be generated, and the phase
angles ¢,, ¢,.,, and ¢, are random numbers between zero
and 2n. We now chose a simple form for the coefficients
Al

A2 =8yt Y(I) Z(m) T(n),

Imn rms

(15)
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where

Y(1)=K,dy',

Z(m) = sz”zj_ l’

I=1,2,..L
(16)
m = 1’ 21 aey Ms

and the function T{#) is assumed to satisfy the Von Karman
spectrum; that is,

T(n+1)  1+60%
T(n) 1+6%n+1)
(n) 2A( ) a7
T
6=—U—.

In Eq. (17), A 1s the longitudinal length scale, U 15 the mean
freestream velocity, and » is the wavenumber. The values of
the constants K, K, and T(l}) are chosen such that the
conditions

i Yi)=1

I=1

M

Y Z(m)=1 (18)
m=1

N

Y T(n)=1

n=1

are satished. The disturbances obtained at the exit of the
first zone exhibit characteristics that are different from those
specified at the inlet; these characteristics are presented later
in the paper.

Lower Boundary of Zones 1-3

The lower boundary of the [irst zone is treated as a
symmetry boundary, and the dependent variables at this
boundary are determined from the following relationships;

prL=p2
Wy = Uy
v, =0 (19}
Wy =W,
P1= P

where the subscripts 1 and 2 refer to the point on the
boundary and the point just in the interior, respectively.
This first-order-accurate approach to implementing the
symmetry boundary condition was chosen instead of a
higher-order-accurate approach because it was found that
the higher-order-accurate approach resulted in a more
restrictive choice of time-step near the leading edge (which
is a flow singularity).

The “no-slip” boundary condition together with an
adiabatic-wail condition and zero-normal derivative of the
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pressure are imposed on the lower surface of zones 2 and 3.
The pressure derivative condition, the adiabatic wall condi-
tion, and the equation of state together yieid

dp
-=0.

The equations used to update the boundary points on the
wall are given by

Pr=p2

Uy =

v,=0 (20)
w, =0

PLi=p2

Higher-order-accurate representations of the pressure and
density derivative conditions such as

p=(4p,—p3)/3
po=4p,— p3)/3

were also used and found to vield nearly identical solutions,
but resulted in a more restrictive choice of time-step.

Exit Boundary of Zone 3

The exit boundary of zone 3 is a subsonic exit boundary.
One flow quantity must be specified at this boundary.
In this study the exit static pressure is specified and the
remaining variables are extrapolated from the interior of
zone 3. This boundary condition has the advantage that,
together with the stagnation. pressure specification at the
inlet, it uniquely determines the mass flow through the
system. However, it reflects pressure waves back into the
system. It should be noted that pressure reflections are also
encountered in the experiments of Refs. [7-9].

The flow across the exit boundary consists of an inviscid
core region (which comprises most of the area of this
boundary) and the boundary layer. In the present computa-
tion, the static pressure from the inviscid region (in the
vicinity of the boundary layer) is imposed within the
boundary-layer region of the exit boundary. However, this
approach is valid only when the pressure gradient in the
wall-normal direction within the boundary layer is small
{which is not the case at any given instant in an unsteady
turbulent boundary layer). In order to circumvent this
problem, the grid in the exit region is gradually coarsened in
the steamwise direction {by a factor of about 160). This
approach has been found to numerically dissipate most of
the unsteadiness within the boundary layer and, in addition,
eliminates the reflection of high-frequency pressure waves.
The direct consequence of using this approach is that the
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boundary-layer flow in the downstream portion of zone 3-is
not physically realistic. Additional details regarding the
effect of the coarse grid on the flow field are presented later
in the paper.

Other Natural Boundaries

The remaining boundary conditions include the periodic
boundaries in the z direction and the symmetry boundary
condition on the upper surface of zones 1, 2, and 3.
Implementing the periodic boundary condition is straight-
forward. The symmetry boundary condition is implemented
by creating temporary arrays of variables above the plane of
symmetry such that the equations of motion can be
integrated at grid points on the plane of symmetry. The
dependent variables above the plane of symmetry are
computed, using the symmetry principle, as

Po=Pp:
Uy =U;
Vo= —1,; (21)
Wo = W,
Po=D:

where the subscript o refers to the point above the plane of
symmetry and the subscript / refers to the corresponding
point below the plane of symmetry.

Zonal Boundary Conditions

The zonal boundaries that separate zones 1 and 2 and
zones 2 and 3 are treated by using an interpolation proce-
dure that is explicit at each iteration within a given step but
which is implicit over the entire time step. To describe the
procedure in detail we consider the zonal boundary between
zones 1 and 2. The grids in these zones are generated such
that there is an area of overlap between the two grids. In
addition, they are constructed such that the last streamwise
(constant-x) plane of zone 1 corresponds to an interior
(constant-x) plane of zone 2 and the first streamwise plane
of zone 2 corresponds to an interior plane of zone 1. Since
the number of grid points used in zones 1 and 2 in the y and
z directions is typically not the same and since the grid-
point spacing in the y direction is not the same in these
zones, the grid points of zone 1 do not coincide with those
of zone 2. A cubic interpolation procedure {fourth-order
accuracy) is used to transfer data between the two zones.

In integrating the equations of motion using the iterative
implicit scheme of Eq.(11), it is necessary to specify
boundary conditions on the exit boundary of zonel
in order to perform an inversion in the x direction. The
boundary condition used in this study is given by

(@71 = 07).,=0, (22)
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where the subscript zb refers to the zonal boundary. A
similar procedure is used at the inlet boundary of zone 2 and
at the zonal boundary separating zones 2 and 3. Upon
completing one iteration in all the zones, the dependent
variables at the exit boundary of zone | arc obtained by
interpolating the dependent variables in zone 2 that lic on
the plane that coincides with the exit plane of zone 1. A
similar post-update corrective procedure is applied at all the
zonal boundaries. A major advantage of the above proce-
dure is that at each iteration the computations within the
various zones are uncoupled. A boundary condition that
does not uncouple the computations in the different zones
would result in systems of equations that are not banded, a
result of the grid-line discontinuities at the boundary (which
makes the solution extremely expensive).

It should be emphasized that the boundary condition
given by Eq. (22) is not equivalent to

Q" 1—Q").,=0 (23)

followed by a post-update corrective procedure. Equa-
tion {22) (in addition to Eq. (11) at the interior points)
allows (Q"*' — Q"),; to assume its proper value when the
iteration process is carried to convergence. Both time
accuracy and spatial accuracy consistent with the order of
interpolation wsed are maintained at the zonal boundary by
using Eq. (22). On the other hand, Eq. (23) represents a
purely explicit boundary procedure, which would adversely
affect temporal accuracy, and, which may affect the stability
of the algorithm and thus require the use of smaller time
steps.

EVOLUTION OF SMALL AMPLITUDE DISTURBANCES

The numerical method and boundary conditions dis-
cussed in the previous sections and the corresponding
computer program were tested by studying the growth of
two-dimensional, small amplitude disturbances in flat plate
flow. This investigation closely resembles that of Ref. [5].
The inlet region (zone 1) is not used in these computations;
instead, the inlet boundary condition given by Eq. (13)
(with the perturbation velocities set to zero) is implemented
at the plane corresponding to the leading edge of the plate.
In addition, zone 3 is also not included in these computa-
tions; zene 2 comprises both the fine-grid region where the
computations are accurate as well as a coarse-grid exit
region where the disturbances are attenuated.

Two-dimensional smali amplitude disturbances are
introduced into the computational region through blow-
ing and suction at the wall as in Ref. [5]. The wall-normal
velocity at the wall in a small strip near the leading edge is
prescribed as

177

v= Aumu“.(x)sin(2nﬁt)
v,.(x)=4sin(8)(1 - cos(P))/(27)"*
6= 2a(x— x,)/(x, ~ X,),

where x, and x, are the steamwise locations of the begin-
ning and the end of the blowing/suction strip, respectively,
A is the amplitude of the imposed disturbance, and § is the
temporal frequency of the disturbance. The Reynolds num-
ber based on inlet conditions is 50,800/in. (flow velocity of
08.5ft/s, freestream temperature of 560°R). The corre-
sponding Mach number is 0.0849. The location of the strip
is given by x,=1.787 in. (Re  =90,780} and x,=22301in.
(Re,, = 113,285). The temporal frequency f and amplitude
A used in this computation were (6000/27) Hz and 0.0001,
respectively. The above conditions are the same as those
used in Ref [5] (however, the computations of Ref [5]
included a three-dimensional disturbance component of
the same magnitude, whereas the present computation is
two-dimensional).

The well-resolved portion of zone 2 was 7.0in. in the
streamwise direction (Re,=355,600). This region is
followed by a coarse-grid region that is 12.01in. in extent.
The upper symmetry boundary was place 30 in. away from
the wall. The results presented in here were obtained with
351 grid points in the streamwise direction (in the well-
resolved portion) and 71 grid points in the wall-normal
direction (stretched grid). The grid spacing in the x direc-
tion and at the wall in the y direction are 0.02 in. (0.3418)
and 0.001 in. {0.0178), respectively (9 is the boundary layer
thickness at Re, = 355,600). The corresponding values used
in Ref. [5] are 0.0184 in. (0.3144) and 0.00162 in. (0.0285},
respectively. The number of time steps used per period of the
disturbance function was 600. Each of the computations dis-
cussed below were carried out for at least 16 periods before
the data were analysed. Three iterations were performed at
cach time step to obtain second-order accuracy in time.

The grid and domain parameters, time-step value, and
number of iterations per time-step mentioned above are for
the nominal case for which results are presented in this
section. However, several other tests were performed to
check the invariance of the solution to computational
parameters. These tests are outlined below:

1. A grid refinement in the x and y directions.

2. An increase in the value of the time-step by a factor
of 2.

3. A decrease in channel width by a factor 10.

4. A variation of the number of iterations per time-step
between 2 and 4.

All of these tests resulted in very small changes in the
solution indicating that the results presented below are
independent of the grid and time-step chosen. The third test
demonstrates that the mean acceleration in the channel
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is negligible for the channel width chosen and that the
boundary layer very closely approximates a Blasius
boundary layer (in addition, profiles of the streamwise and
wall-normal mean-velocity componerits were found to be
nearly identical to those of the Blasius boundary layer in the
near-wall region).

"The growth rate «; for both the » and » components of
velocity is shown plotted as a function of Re, in Fig. 3.
Included in this figure are the results of Gaster (as reported
in Ref. [5]) and the numerical results of Ref. [5] for the »
component of velocity. The values of «; in both this
investigation and Ref. [5] were obtained using the maxi-
mum ampiitude at each streamwise location. The values of
a«; for the # component arc in good agreement with the
theory of Gaster {a similar agreement for this component is
reported in Ref. [5]). The values of «, for the » component
are in good agreement with those of Ref. [5]. Both the pre-
sent computations and those of Ref. [ 5] show growth near
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FIG. 4. Variation of streamwise wavenumber with Re,.
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the blowing/suction strip followed by a region of decay
(2, >0) and a second region of growth (x, < 0). In addition,
in the present computation very large decay rates are secn
in the coarse-grid region Re,>=350x 10% this helps
attenuate the disturbances such that the effect of the exit
pressure reflective boundary condition is negligible. It
should be noted that both the present computation and that
of Ref [5] show different growth rates for the « and v
components.

Figure 4 shows the variation of «, (the wave number in
the streamwise direction) for the v component with Re,.
Included in this figure are the data from the present com-
putation, data from [ 5], and results from linear theory. The
difference between the different results in the post transition
region is less than 2.0 %.

The i« and v amplitude distributions in the wall-normal
direction at the location Re, = 152,400 are shown in Fig. 5.
The computed data of the present investigation are com-
pared with linear theory. Clearly the two sets of data are
in good agreement. Figure 6 shows a similar comparison
of velocity amplitudes at the streamwise location
Re, = 355,600.

The integration scheme used is iterative-implicif in nature
and requires multiple iterations at each time-step to be time-
accurate. Strict second-order accuracy in time is achieved
only when the residual {Q7+!— QF) is driven to zero at
each time step. However, in practice, a moderate drop in
residual values has been found to yield time-varying solu-
tions that are essentially independent of additional itera-
tions. Figure 7 shows the variation of the growth factor &,
with Re . obtained with 2, 3, and 4 iterations per time step.
Two iterations yielded an rms residual reduction of about
12, three iterations yielded a reduction of about 125, and

< Umax, /inear theory
——— Umax» COMputation
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FIG. 5. Amplitude distributions in the wall-normal direction at
Re, =152,400.
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zone 1 as 10in,, that of zone 2 as 21 in., the well-resolved
portion of zone 3 as 3in., and the exit region (with the
rapidly coarsening grid) as 12 in. The grid system consisted
of a (101 x 51 x 181} grid in zone 1, a (842 x 61 x 181 grid
in zone 2, and a {271 x 71 x 361) grid in zone 3. The total
number of grid points used was 17,357,664, The grid B com-
putation ws performed: with the iength of zone 1 as 10 in,,
that of zone 2 as 7.25 in., the well-resolved portion of zone 3
as 5.75 in., and the exit region as 12 in. The grid system con-
sisted of a (101 x 61 x 181) grid in zone [, a (292 x 61 x 181)
grid in zone 2, and a (493 x 71 x 361) grid in zone 3. The
total number of grid points used was 16,975,196, The
spanwise dimension of the computational region for both
grids A and B was m/21in. (this was estimated using the
spanwise dimension requirement of the channel-flow com-
putations of Ref. [10]). Figure2 shows the lengths of
zones 1-3 used in grids A and B and also the resolution in
the streamwise and spanwise directions (based on the wall
shear velocity at Re . = 650,000).

The height of the computational box is 3.0 in. Since sym-
metry boundary conditions are used on the upper boundary
of all the zones, the simulation is in effect a channel-flow
simulation, albeit a very wide channel (approximately 130
times the momentum thickness at Re,=12.0x 10%), The
resulting acceleration of the flow is minimal, the accelera-
tion parameter K (K= (v du/dx)/u*) being approximately
1.6 x 10~ % Hence, the onset and length of transition are
essentlially the same as those for the zero-acceleration case.

The nondimensional time-step used in the computation
was Atu_, /6% =0.044, where 5* is the displacement bound-
ary-layer thickness at the end of the well-resolved portion of
zone 3 in grid B {(at Re =6.5x 10°}. The maximum CFL
number corresponding to this time-step is about 60.0 (the

CFL number based on the convective velocity is
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approximately 6.0). The integration time used for the
accumulation of the statistical sample presented in this
study (grid B} is approximately 1756*/u,. The computing
time required to obtain this sample was about 800 h on a
Cray-YMP. The computer program required about 14 usec
of CPU time per grid point per iteration.

Characterization of Free-Stream Disturbance

As described in the previous section the free-stream
disturbance is generated by perturbing the three velocity
components at the inlet of zone 1. The inlet perturbation
velocities are obtained using a prescribed power spectrum
(these data were taken from Refs. [7-91). The length scale
A was taken to be 0.5 in. However, the disturbance charac-
teristics obtained at the leading edge of the plate are dif-
ferent from those specified at the inlet. In this study, the
intensity values at the inlet of zonel were iteratively
modified until the intensity values at the leading edge of the
plate were approximately the same as those obtained in
Refs. [7-97 (labeled as the grid No. 2 case in Refs. [7-9]).

Figure 8 shows the variation of t,q,, Urmg, Wems, and the
free-stream turbulence intensity (7 ,.) at a height of 0.5in
above the flat plate. An inlet intensity value of 9% (of the
free-stream velocity) was used for all the velocity com-
ponents in order to obtain intensity values around 2.75% at
the leading edge of the plate {Ref. [7] reports a value of
2.6% for the grid No. 2 case). Note in Fig. 8 that the three
components converge to nearly the same value at the
leading edge of the plate, The experimental data of Ref. [7]
show a variation of +15.0% in intensity values at the
leading edge with 0, > W e > Ui

Figure 9 shows the power spectrum obtained 1.0 in,
upstream of the leading edge and 0.5 in. above the flat plate
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FIG. 9. Computed power spectrum for the streamwise
component, 1.0 in. upstream of the leading edge and at y =0.5in.
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FIG. 10. Computed skin friction along the length of the flat plate
(coarse grid).

for the streamwise component of the velocity. This power
spectrum was computed using fast Fourier transforms
(FFTs) in conjunction with a Hanning window, as was
done in Ref. 19. The size of the window was chosen as the
period of the lowest frequency perturbation introduced at
the inlet to zone ! (the lowest frequency being 24 Hz).
Larger windows resuit in more noisy data. The computed
spectrum roughly approximates the Von Karman spectrum.
In a more recent investigation it was determined that the
computed spectrum closely approximates the spectrum
obtained in the late stages of decay of isotropic turbulence;
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FIG, 11. Computed skin friction along the length of the flat plate
(grids A and B).

the reason for this behavior as weli as the modifications
required in the computational procedure to obtain the Von
Karman spectrum will be discussed in a separate article.
The experimentally obtained power spectrum of Ref. [7]
has not been reproduced in Fig. 9, because it closely
matches the Von Karman spectrum in the frequency range
depicted.

Surface Skin-Friction Comparisons

To the applied computational fluid dynamicist, surface
skin-friction and heat transfer are important variables
that cannot be predicted accurately and reliably using
the Reynolds-averaged Navier-Stokes equations and the
available turbulence models. Hence, we place particular
emphasis on the computed skin friction in this study.

Figure 10 shows the computed skin-friction, the
experimental data from Refs. [8, 9], and the laminar and
turbulent (turbulent correlation from Ref. [18]) skin-fric-
tion distributions. The experimental configuration of
Ref. [9] is nearly identical to that of Ref. [8] except that the
experiments were conducted with a heated wall instead of
an adiabatic wall. The computed data shown in Fig. [10]
were obtained on an extremely coarse grid (101 x 51 x61})in
zone 1, (402x 51 x61) in zone2, and (185x61x121) in
zone 3, The computed data do show an increase in skin
friction over the laminar values, and this increase is seen to
originate in the region where the experimental data indicate
the onset of transition. The increased resolution in zone 3
{twice that of zone 2 in the x and z directions and near the
wall in the y direction) results in a very rapid increase in
skin friction at about Re,= 10 x 10°. However, both the
zone 2 and zone 3 skin-frictton values fall far short of the
values obtained from the turbulent correlation as well as
the experimental data. This is 10 be expected because of the
coarse grids used in zones 2 and 3. One point of computa-

o  Computation
Turbulent correlation

------ Blasius

FIG. 12. Variation of boundary-layer thickness with streamwise
distance.



182

tional interest is the smooth transition of the skin friction in
the zonal boundary region (which is at Re, = 10x 10° for
this computation).

Figure !1 shows the skin-friction variation as in Fig. 10
but from the computations on grids A and B. The improve-
ment in the computed skin friction is apparent. The
computed onset of transition coincides well with the
experimental onset of transition in both computations. The

Blasius profile
(Rey = 2.5 x 10%)
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grid A curve levels off at a lower value {because of the
coarser grid in zone 2) and subsequently, in zone 3, the
computed skin friction overshoots the turbulent correlation
and then decreases. This overshoot has been observed in
other experiments at high free-stream turbulence levels.
However, the overshoot in the computation occurs at a
point where the grid resolution is increased—not near the
experimentaily observed transition region, Both Figs. 10
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and 11 indicate a second “numerical transition” in the
region where the grid resolution increases. The grid B curve
shows a transition region that lies in between the data from
Refs. [8,9]. The well-resolved region in zone 3 is not
sufficiently long to determine if the computed skin friction
reduces in value to the turbulent correlation farther
downstream. The presence of small oscillations in the skin-
friction data is a reflection of a marginal statistical sample.
Smoother data can be obtained by using a larger sample.

yib

183
Velocity Statistics

In this subsection we present some of the velocity data
obtained in the transition region and in the early-turbulent
region. Only the results obtained from the grid B computa-
tion are included here. In many of the figures cited herein,
the wall-normal direction (y) is nondimensionalized by the
local boundary-layer thickness. Figure 12 shows the varia-
tion of the boundary-layer thickness in the streamwise
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FIG. 14. Streamwise component of turbulence intensity at various streamwise locations {(normalized by free-stream velocity): (a) computed profile;

(b) experimental profile (Ref. [9]); (c) experimental profile (Ref. [8]).
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FIG. 15. Computed normal component of turbulence intensity at
various streamwise locations {normalized by [ree-siream velocity).

direction. Included in this figure are the laminar boundary-
layer thickness and the turbulent boundary-layer thickness
obtained from a turbulent correlation [18].

Figure 13a shows computed mean velocity profiles
obtained at various streamwise locations. The dashed
lines represent the law of the wall and the log law
(ut=25In{y* 1+ 5.0]. The laminar velocity profile at
Re,=2.5%10° is also shown. The computed velocities
gradually change from laminar to the turbulent profile with
increasing Re . The changes in the velocity profiles are more
rapid in the transition region than in the early turbulent
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FIG. 16, Computed spanwise component of turbulence intensity at
various streamwise locations (normalized by free-stream velocity).
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FIG. 17. Variation of peak turbulence intensities with streamwise
distance.

region. Similar trends are seen in the data of Ref [9],
shown in Fig. 13b, and those of Ref. [8], shown in Fig. 13c.
Turbulent profiles arc attained earlier in Fig. 13c than in
Fig. 13b. This observation is consistent with the behavior of
the corresponding skin-friction profiles shown in Fig. 11.
The computed profiles indicate a transition region that lies
between the two sets of experimental data.

The computed turbulent profile (Re, =6.375x 10°)
satisfies the law of the wall but does not duplicate the log
law well. The reason for the discrepancy is that the resolu-
tion in zone 3 is less than that required for an accurate
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FIG. 18. Turbulence intensities at streamwise location Re, =6.375 x
103, normalized by wall-shear velocity and plotted in wall coordinates.
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FIG. 21. Reynolds shear—stress distribution at the streamwise location

Re, =6.375 x 10°, normalized by the square of the wall-shear velocity and
plotted in wall coordinates.

simulation of turbulent flow. The channel-flow results of
Ref. [10] indicate that the grid spacings in the x and z
dircctions that are required for an accurate simulation
are Ax* ~12.0 and 4z% ~ 6.0. Accurate computations of
transition may require an even higher resolution. The values
used in this study in zone 3 (based on the wall-shear velocity
at Re, =65x10%) are Ax* ~282 and 427 ~9.8. A mesh
refinement study is far too expensive on currently available
computers. However, computations on coarser meshes,
such as the one on which the data of Fig. 10 were obtained,
resulted in a larger discrepancy between the computed
results and the log law.

Figure 14a shows the streamwise component u,,,, of the
turbulence intensity normalized by the free-stream velocity
at various locations along the plate: in the transition region
(Re, =20, 3.0, 35,40, 4.5 x 10%) and in the early turbulent
region (Re,=6.375x10%). The peak value increases with
increasing Re, and reaches its maximum (about 18.5% of
the free-stream velocity) at about Re,=4.0x10° in the

FIG. 22.

FIG. 23.

FIG, 24,

FIG. 25.

FIG. 26.

Fi1G. 27.

Spanwise vorticity contours in an (x, y) plane in the region 2.0 x 10° < Re, £ 3.5 x 10% at 1 = 20.56*/u -
Spanwise vorticity contours in an (x, y) plane in the region 2.25 % 10° € Re, £3.75 x 107 at t =41.06* /u.,.
Spanwise vorticity contours in an (x, y) plane in the region 2.5 x 10° < Re, < 4.0 x 10° at 1= 51.255%/u .
Spanwise vorticity contours in an (x, y) plane in the region 2.5 x 10°* < Re, < 4.0 x 10° at t =61.56*/u,, .
Spanwise vorticity contours in an (x, z) plane at y* = 4.5 and in region 2.25x 10° < Re, £3.75 < 10°,

Spanwise vorticity contours in an {x, z) plane at y* = 4.5 and in region 3.625 % 10° £ Re, <5125 x 10°.
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in the region 3.625 x 10° < Re, < 5.125 x 10°. The transition
process is essentiglly completed in this region. The
appearance of the vortical structures, which occurs at about
Re,=4.0x 10° is very abrupt. There are only a few such
structures upstream of this streamwise location. In anima-
tions of the spanwise vorticity cntours in this region, some
of these structures were seen to originate as extremely smali,
approximately circular regions of concentrated vorticity
which then elongate into the larger elliptical shapes scen in
Fig. 27. Some of these early, less elongated shapes can be
seen in the upstream region.

Figure 28 shows spanwise vorticity contours in the
(x,z) plane in the early turbulent region, 5.0x10°g
Re, £6.5% 10% Unlike in Fig, 27, the vortical structures
fill the entire region and a certain pattern uniformity is
observed. Figure 29 shows spanwise contours in the exit
region where the grid rapidly expands. The dissipation of
spanwise vorticity owing to grid coarseness is evident (thus
validating the use of the exit boundary procedure discussed
carlier).

Streamwise vorticity contours in the region 3.625 x 10° g
Re, <5.125x10° are shown in Fig. 30 at y* =34.5. The
irregular boundary seen in Fig. 30, closely resembles that of
Fig. 27. Figures 31 and 32 also show streamwise vorticity
contours, but in regions that are subsets (both in the
streamwise and spanwise directions) of the region shown in
Fig. 30. The letter “s,” used to mark the ordinate, represents
the dimension of the computational region in the z direction
(7/2 in.}. One important feature that has been noticed is
that the transition boundary is marked by the appearance of
counterrotating vortex pairs (clearly evident in Fig. 32),
Figure 33 shows crossflow velocity vectors in a (y, z} plane
that is located approximately in the middle of Fig. 32, thus
cutting through the largest pair of vortices. The cross-
sectional structure of this pair of vortices is clearly seen in
Fig. 33. The letter “d,” used to mark the ordinate in Fig. 33,
represents the laminar boundary-layer thickness at Re, =
4.0 x 10°. The wall-normal extent of the vortex pair is about
one boundary-layer thickness.
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SUMMARY

A direct simulation of transition and turbulence in a spa-
tially evolving boundary layer is described. The simulation
is performed using a high-order-accurate, upwind-biased,
iterative-implicit, finite-difference algorithm. The algorithm
is developed for the unsteady, compressible form of the
Navier-Stokes equations. However, the simulation is
performed at a low subsonic Mach number (0.1} because
experimental data are available for this speed regime. This
study focuses on the high-free-stream disturbance case
in which transition to turbuience occurs close to the
leading edge, thereby substantially reducing computing
requirements. A method of numerically generating free-
stream disturbances of a prescribed nature is also presented.

One numerical tool that has been extremely useful in the
current investigation is the multiple-zone technique, which
permits the use of different grid densities in different regions
of the flow. The multiple-zone approach has resulted in an
efficient use of the total number of grid points available. The
zoning technique has been used in the current study to
reduce the number of grid points in zones | and 2. It was
found that the zonal procedure did not degrade the quality
of the solution in the vicinity of the zonal boundary.

Results included (1) the variation of skin friction zlong
the length of the flat plate, (2) velocity-related statistical
data, and (3) preliminary visualizations of the instan-
taneous flow field to elucidate the nature of the computed
transition process. Specifically, it was shown that the transi-
tion boundary was marked by pairs of counterrotating
streamwise vortices. Comparisons with experimental data
are also included. The results indicate that the essential
observed features of the transition process have been cap-
tured in the computation. However, earlier channel-fiow
computations, as well as grid refinement studies in this
investigation, indicate that a grid that is finer by as much as
factors of 20 and 1.5 in the streamwise and spanwise
directions, respectively, may be required to achieve an
accurate simulation.

FIG, 28,
FIG. 29.
FIG. 30. .
FIG. 31.
FIG. 32

FIG. 33.

Crossflow velocity vectors at the streamwise location Re, = 384,375,

Spanwise vorticity contours in an (x, z) plane at ¥ * = 4.5 and in region 5.0 x 105 Re, < 6.5 < 10°.

Spanwise vorticity contours in an {x, z) plane at y* = 4.5 and in region 6.5 x 10° < Re, < 12.5 % 105,

Streamwise vorticity contours in an (x, z) plane at y* = 34.5 and in region 3.625 x 10° < Re <5125 x 10° and 0z € 5.
Streamwise vorticity contours in an (x, z) plane at »* = 34.5 and in region 3.625 x 10° < Re, <4.625 x 10° and 5/3 < 2 < 25/3.

Streamwise vorticity contours in an {x, z) plane at ¥ = 34.5 and in region 3.625 % 10° < Re, <40 x 10% and 5/3 <z < 5/2.
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